
IJSRST174613 | Published :25March2018 | March-April-2018 [(4)6: 57-58]

© 2018 IJSRST | Volume 4 | Issue6 |Print ISSN: 2395-6011 | Online ISSN: 2395-602X

National Conference on Smart Computation and Technology in Conjunction with The Smart City Convergence 2018

 57

Searching A Node In Linked List Using Divide And Conquer
Approach

Puneet Mathur*, Rahul Gupta, Pranav Pandey

Department of Computer Engineering, Poornima Inst. of Engg. & Technology, Jaipur, India

ABSTRACT

The general idea of this paper is to implement binary search algorithm based on divide and conquer approach

on the linked list. To implement the binary search algorithm the nodes of the linked list must be sorted in any

order. In case of arrays it is very easy to find out the middle element because of the static and contiguous

arrangement of its elements but because of the dynamic nature and random allocation of the nodes it is time

consuming task to find out the middle node in sorted linked list. In this paper we have implemented two

distinct pointers named, single Step pointer and double Step pointer to find out the middle node.

Keywords: Divide and conquer, Binary Search, middle element, single Step pointer, double Step pointer

I. INTRODUCTION

Binary search is a divide and conquer algorithm and is

very widely used. It is specially used when the size of

data is very large. If we have very large amount of

data and we apply any linear searching algorithm on it,

then the process will be everlasting, and as the

complexity of linear search is O(n), so the complexity

will be very high as the number of input data

increases. So, we need to use divide and conquer

approach, in which the whole work is divided and

then conquered separately. Binary search does the

same, it determines the middle element first and then

compares it with the key element, and on the basis of

that comparison the operation either stops or the

algorithm operates on right half or the left half and

this process is done recursively until the middle

element matches with key. Implementation of this

algorithm in arrays is quite easy. But if we talk about

linked lists, it is not so straight forward. Determining

the middle element is the first step, and in linked lists

the nodes are at random locations in memory, so the

middle node cannot be directly found. So, here we

have used the special approach of dual pointers, in

which we have used two pointers, a single Step

pointer and a double Step pointer, to determine the

middle node.

II. STEPS TO DETERMINE THE MIDDLE

ELEMENT

1. First of all, we take two pointers, a singleStep

pointer and a doubleStep pointer.

2. Then both the pointers are initialized with head

of the linked list.

3. Then the linked list is traversed by both of these

pointers.

4. For each step the doubleSteppointer will move

twice the doubleStep pointer.

5. In this manner, when the doubleStep pointer

will reach the end of list, the singleStep pointer

will be pointing to the middle element of the list.

6. And we get the address of middle node through

singleStep pointer.

III. ALGORITHM TO FIND OUT MIDDLE

ELEMENT

MIDDLE_NODE(startNode, endNode)

1. IF startNode = NULL, THEN

2. RETURN NULL;

(END OF STEP 1 IF CLUASE)

3. singleStep = startNode

4. doubleStep = startNode

5. REPEAT STEPS 6 TO 9 WHILE singleStep !=

doubleStep,

International Journal of Scientific Research in Scienceand Technology (www.ijsrst.com)

58

6. singleStep = doubleStep -> NEXT

7. IF singleStep != endNode, THEN

8. singleStep = singleStep -> NEXT

9. doubleStep= doubleStep -> NEXT

(END OF STEP 7 IF CLUASE)

(END OF STEP 5 LOOP)

10. RETURN singleStep

IV. STEPS FOR IMPLEMENTING BINARY SEARCH

ON LINKED LIST

1. Firstly, we take two pointers startNode and

endNode, and initialize startNode with HEAD

and then find last node of list and store that in

endNode.

2. Then, we pass these startNode and endNode to

the function MIDDLE_NODE and the return

value is stored in middleNode.

3. If the info of middleNode matches with the key

element, then the process is stopped, else proceed

to step 4.

4. If info of middleNode> key, then we need to

repeat the above steps for upper half, else proceed

to step 5.

5. If info of middleNode< key, then we need to

repeat the above steps for lower half.

If the key element is found then the loop will

terminate, but if the key element does not exist in the

list, then we will get into indefinite loop. If we are

handling arrays, then we simply put the condition

LOW <= HIGH, but in case of linked list the nodes

exists at random locations in the memory unlike in

arrays, so loop termination condition will be different.

In this process, we continuously divide the array, goes

onto the left or right side of middle element on the

basis of comparison with key, so if during this process,

we get onto a single node parition, whose info does

not match with key, then we have to terminate. So,

when we have a single node partition, the condition

would be, startNode=endNode=middleNode.

V. ALGORITHM FOR IMPLEMENTING THE

BINARY SEARCH

BINARY_SEARCH(HEAD, KEY)

1. startNode =HEAD

2. REPEAT STEP 3 WHILE endNode -> NEXT !=

NULL,

3. endNode = endNode -> NEXT

(END OF STEP 2 LOOP)

4. REPEAT STEPS 5 TO 17,

5. middleNode = MIDDLE_NODE(startNode,

endNode)

6. IF middleNode -> INFO = KEY, THEN

7. PRINT “KEY FOUND”

8. BREAK

9. ELSE IF middleNode -> INFO > KEY, THEN

10. endNode = startNode

11. REPEAT STEP 12 WHILE endNode -> NEXT !=

middleNode,

12. endNode = endNode -> NEXT

(END OF STEP 11 LOOP)

13. ELSE

14. startNode = startNode -> NEXT

15. (END OF STEP 6 IF CLAUSE)

16. IF startNode == middleNode AND endNode ==

middleNode, THEN

17. BREAK;

(END OF STEP 4 LOOP)

18. RETURN

VI. CONCLUSION

Binary search implementation on Arrays is more easy as

compared to Linked List, due to following reasons:

a. The array elements are directly accessible by their

locations or indices, while this is not the case in

linked list (in which any node is referred by the

next pointer of its previous node).

b. The array elements are stored at contiguous

memory locations, while linked list elements are

stored at random locations in memory.

c. The arrays are static in nature, as its size(elements

holding capacity) has to be decided at the time of its

definition, while linked list is dynamic, so the

nodes can be added or deleted at run time.
Complexity of Binary Search algorithm in case of linked

list is high as compared to arrays, as there is an

additional algorithm to find out the middle node.

VII. REFERENCES

[1] http://en.wikipedia.org/wiki/Binary_search_algorithm

[2] http://www.getappninja.com/blog/implementing- a-

binary-search-in-ios

http://en.wikipedia.org/wiki/Binary_search_algorithm

